Arising of Bergman reproducing kernel in Bose-Fock space

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Weights Which Admit the Reproducing Kernel of Bergman Type

In this paper we consider (1) the weights of integration for which the reproducing kernel of the Bergman type can be defined, i.e., the admissible weights, and (2) the kernels defined by such weights. It is verified that the weighted Bergman kernel has the analogous properties as the classical one. We prove several sufficient conditions and necessary and sufficient conditions for a weight to be...

متن کامل

Pointwise Estimates for the Bergman Kernel of the Weighted Fock Space

We prove upper pointwise estimates for the Bergman kernel of the weighted Fock space of entire functions in L2(e−2φ) where φ is a subharmonic function with ∆φ a doubling measure. We derive estimates for the canonical solution operator to the inhomogeneous CauchyRiemann equation and we characterize the compactness of this operator in terms of ∆φ.

متن کامل

Reproducing Kernel Space Hilbert Method for Solving Generalized Burgers Equation

In this paper, we present a new method for solving Reproducing Kernel Space (RKS) theory, and iterative algorithm for solving Generalized Burgers Equation (GBE) is presented. The analytical solution is shown in a series in a RKS, and the approximate solution u(x,t) is constructed by truncating the series. The convergence of u(x,t) to the analytical solution is also proved.

متن کامل

Subspace Regression in Reproducing Kernel Hilbert Space

We focus on three methods for finding a suitable subspace for regression in a reproducing kernel Hilbert space: kernel principal component analysis, kernel partial least squares and kernel canonical correlation analysis and we demonstrate how this fits within a more general context of subspace regression. For the kernel partial least squares case a least squares support vector machine style der...

متن کامل

Policy Search in Reproducing Kernel Hilbert Space

Modeling policies in reproducing kernel Hilbert space (RKHS) renders policy gradient reinforcement learning algorithms non-parametric. As a result, the policies become very flexible and have a rich representational potential without a predefined set of features. However, their performances might be either non-covariant under reparameterization of the chosen kernel, or very sensitive to step-siz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proyecciones (Antofagasta)

سال: 1998

ISSN: 0716-0917,0717-6279

DOI: 10.22199/s07160917.1998.0002.00006